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LETTER TO THE EDITOR 

Bound states and confining properties of relativistic point 
interaction potentials 

F Dominguez-Adame and E Maciht 
Departamento de Fisica de Materiales, Facultad de Ciencias Fisicas, Universidad 
Complutense de Madrid, 28040-Madrid, Spain 

Received 6 February 1989 

Abstract. Bound states of the one-dimensional Dirac equation for vector plus Lorentz 
scalar point interaction potentials have been obtained. Confining properties of these 
potentials are briefly discussed. 

Point interaction potentials (PIPS) may be used to approximate, in a simple way, more 
structured and more complex, short-ranged potentials. Calculations involving PIPS, 

usually represented as 8-function potentials, are largely simplified. Although solutions 
of the Schrodinger equation for 8-function potentials are quite straightforward, some 
ambiguities have been found in defining relativistic PIPS (Fairbairn et a1 1973, Suther- 
land and Mattis 1981). Potentials of different shapes which approach the &function 
limit (zero width and constant area) give eigenfunctions reaching different values at 
the discontinuity point. A reasonable criterion to surmount this ambiguity was given 
recently by McKellar and Stephenson (1987a, b). These authors considered the solution 
of the one-dimensional Dirac equation for an electrostatic (vector type) plus a Lorentz 
scalar square barrier, and then they studied the &function limit. Also, they obtained 
boundary conditions for the wavefunctions of relativistic particles in pure vector and 
pure scalar sharply peaked potentials, which approach the &function limit. The results 
are independent of how this limit is taken in the potential after solving the Dirac 
equation. Moreover, both types of potentials have been separately considered in their 
discussions on quark confinement by a periodic array of &function potentials (a 
Dirac-Kronig-Penney model for relativistic quarks in nuclei). 

One of the aims of the present letter is to extend previous results to be applied for 
any peaked mixed potential. Boundary conditions and confining properties for the 
one-dimensional Dirac equation with mixed PIPS are briefly discussed, especially when 
the strength of vector and scalar terms of the potential just take the same value; this 
choice of the potential parameters could be of particular interest in quarkonium physics 
(Beavis et al 1979). 

Since the advent of quark models, interest in bound states of relativistic systems 
has increased. The relativistic covariance of the instantaneous two-body Dirac equation 
(a simplified formulation of the relativistic two-body problem) restricts the interaction 
to the forin of a PIP (Glockle et a1 1987, and references therein), because only a 
mathematical point has a relativistically invariant shape. As a first approximation, the 
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one-body Dirac equation may be used to find bound states when the mass of one of 
the constituent particles becomes very large (for instance, mesons with one of the 
quarks heavier than the other do exist). We also discuss bound states of the Dirac 
equation for an arbitrary mixture of vector and scalar PIPS. 

Let us start with the one-dimensional Dirac equation 

where the operator k ( x )  = -iax(azm + U(x) - E )  acts on the two-component 
wavefunction of the particle, the a being 2 x 2 Pauli matrices. We take a mixed potential 
of the form 

U(X) = (g,+ azg,)u(x) (2) 

where u(x) is any peaked function at x = 0 satisfying v ( x )  dx = 1. g, and g, are 
the strengths of the vector and scalar components of the potential, respectively. The 
first-order differential equation (1) can be solved by an iterative Neumann solution. 
Around the PIP localisation, the solution becomes 

$(O’) = P exp( lo: k(x)  dx)$(O-) (3) 

P being a Dyson-type ordering operator. Taking the 6-function limit of u(x), the 
integration equals -iax( g, + a,g,), which commutes at separate spatial points so we 
may set P = 1. Finally, the following boundary condition is reached: 

$(o+) = exp[-iax(g,+ azg,)l$(o-). (4) 

In order to obtain an explicit expression of boundary condition, we use the Lagrange- 
Sylvester formula 

where A I  and A2 are the eigenvalues of the 2 x 2  matrix M. Thus, taking M =  
-iax(gv+ azg,), whose eigenvalues are *i(gt - g:)1’2, we obtain 

$(O+) =cos(gt-gf)”Z (-1:+ . -la-)$(O-) 1 

where CY, = (g,* g,) tan(gt - g:)1/2/(gt - gf)’l2 are always real numbers. Note that the 
current $‘ax$ is continuous at x = 0, but the probability $’$ jumps except for pure 
vector potentials. Equation (6) cannot be applied for equally mixed potentials ( g ,  = gs), 
since eigenvalues of M = -ig,a,( 1 +a,) vanish. Fortunately, the condition M“ = 0 is 
fulfilled for n 3 2 ,  for this particular mixture of the potentials, so the exponential 
function in equation ( 5 )  is easily expanded to give exp( M) = 1 - ig,ax( 1 + a,). This 
result could be regarded as a limiting case of equation ( 6 ) ,  considering that CY+ 

approaches 2g, and CY- vanishes as g, + g, . Analogous arguments hold for inverted 
mixed potentials (gv= -gJ. Therefore, equation ( 6 )  may be used even if lgvl = IgJ. 
We should emphasise that periodic trigonometric functions appearing in equation ( 6 )  
switches in the form of hyperbolic functions when the scalar term is larger than the 
vector one, presenting no periodicity with the potential strength. 
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We shall discuss in detail the following special cases. 
( a )  Pure vector potential ( g ,  # 0, g,  = 0 ) :  a+ = a- = tan 8,. 
( b )  Pure scalar potential ( g ,  = 0, g,  # 0 ) :  a+ = -a- = tanh g , .  
( c )  Equally mixed potential (g, = g,  = g+/2): a+ = g + ,  a- = 0.  Thus the upper com- 

ponent of the wavefunction becomes continuous, like the non-relativistic wavefunction 
for the &function potential. Nevertheless, the lower component remains discontinuous. 

( d )  Inverted mixed potential (g, = -gs= g-/2): a+ = 0, a- = g-. In this case, the 
lower component is continuous at the localisation of the PIP. 

In order to find bound states of the one-dimensional Dirac equation for the potential 
U ( x )  given in (2), we employ the S-matrix formalism. A free particle coming from 
the left may be reflected at the barrier, and also transmission may exist. For a 
normalised-to-unity incident particle wavefunction, solution of the Dirac equation for 
x # 0 is written as 

W(p)  eiP”+RW(-p) e-ipx x < o  
TW( p )  eipx x > o  (7) 

where R and T are the amplitudes of the reflected and transmitted waves respectively, 
satisfying IRI2+ I TI2 = 1. The two-component spinor is defined as Wt( p )  = 
(1, p / (  E + m ) )  (t denotes the Hermitian conjugate). From the boundary condition (6) 
we find 

The poles of T in the upper half p plane lie along the imaginary axis for potentials 
vanishing beyond some finite distance, such as PIPS. These poles correspond to the 
bound states of the potential. Therefore, replacing p by iq, where q = + ( m 2  - E’)’/’  
is real for bound states, we obtain 

(9) 
It can be readily checked that this result does not depend on the particular choice of 
matrices appearing in the Dirac equation. Note that massless particles cannot be 
bounded, ejen if the potential strength becomes infinite. Using the normalisation 
condition I-, $‘(x)$(x) dx = 1, bound state eigenfunctions can be written as 

- 4  = ( E g ,  + mg,) tan(g: - g f ) ’ / ’ / (  g :  - g;) l / ’ .  

with 

Let us now consider some particular cases listed below. 
( a )  Pure vector potentials (g, = 0). The condition (9) becomes - 4  = E tan g,. 

Therefore, the particle energy becomes positive for negative values of tan g,, while a 
negative bound-state level appears for positive tan g, (the special case tan g ,  = 0 will 
be discussed below). The sign of the strength g,, positive for repulsive potentials and 
negative for attractive ones, is immaterial as far as the existence of bound states is 
concemed, in accordance with general results for bound states of the one-dimensional 
Dirac equation (Coutinho and Nogami 1987). The energy of the single bound state is 

E = -4tn sin 2g,/ lsin gvl. (11) 
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We observe the occurrence of discontinuity points at g, = n.rr, n being an integer (this 
situation was first discussed by Sutherland and Mattis (1981)). Figure 1 shows the 
bound-state energy as a function of the potential strength. A bound state emerges 
from the continuum of positive energy states as g, is slightly negative. By decreasing 
g,, this bound state passes through zero and reaches the negative continuum at g, = - T, 

just as another bound state drops out of the positive continuum. Analogous behaviour 
is found for positive values of g,, but beginning from the continuum of negative energy. 
At the critical values of the potential strength g, = nr, the boundary condition ( 6 )  is 
simply written I,!I(O') = (-l)"I,!I(O-); except for the constant phase factor, the vector 
potential does not act on the wavefunction and there is no binding of particles. 

( b )  Pure scalar potentials. Now equation (9) is written as -4 = m tanh g,. Since 
q must be kept positive, bound states occur only if g,<O; there exists no binding for 
repulsive scalar potentials at all. Pairs of allowed energy values appear, which is a 
common feature of other scalar-type potentials (Coutinho et a1 1988). Bound states 
are given by 

Unlike the vector coupling, the same scalar potential can bind particles and antiparticles 
alike. As seen in figure 1,  the energy level never reaches zero (a comprehensive 
discussion on the zero-energy solution for general scalar potentials can be found in 
Coutinho er a1 (1988)). Therefore, positive and negative energy states remain well 
separated even if the potential becomes strong. 

(c )  Equally mixed potentials. Since a+ = g+ and a- = 0 we obtain -4 = f( m + E ) g + ,  
so the condition for the existence of bound states is g+<O. The corresponding energy 
level is given by 

and it becomes negative for lg+l> 2. The boundary of the lower continuum is never 
reached for finite values of g, due to the presence of the scalar potential term, but the 
energy level crosses zero because of the vector potential term (figure 1 ) .  

E = * m  sech g,. (12) 

E = m(4-g:)/(4+g:) (13) 

Figure 1. Bound-state energy as a function of the potential strength for pure vector (broken 
curve), pure scalar (short chain curve), equally mixed (full curve) and inverted mixed 
(long chain curve) point interaction potentials. 
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( d )  Inverted mixed potentials. We have g- = a- and a+ = 0. Then we have q = 
f ( m  - E)g-  with g- > 0 (no bound states appear if g- < 0). The bound-state energy 
takes the form 

E = -m(4-g?)/(4+g!) (14) 

which is positive for g- > 2. This equation is deduced from equation (13) replacing 
m by -m, which is equivalent to changing U, and g, to -cr, and -g, in the Dirac 
equation (1). For weak coupling, the bound-state energy is E 3 -m; by increasing g- 
the level is raised but never reaches the upper continuum (figure 1). 

The question on confinement by PIPS has been partially answered by McKellar and 
Stephenson. They pointed out that strong scalar PIPS will confine the particle, whereas 
the confinement is impossible for strong vector potentials due to the Klein paradox 
(Klein 1929). 

Now we briefly discuss confining properties of equally and inverted mixed poten- 
tials. For the sake of completeness, pure vector and pure scalar potentials are also 
discussed. The probability for particle transmission T through the potential U ( x ) ,  
defined as T = I TI2, can be found to be 

(15) 2 1/2  -1 
T = T (  E )  = [ 1 + sin2(g? - gf)1'2( Eg, + mg,)2/p2(g: - g,) ] . 

For pure vector potentials (g, = 0), T is bounded from below T 2 ( 1  + m2/p2)-' > 0, so 
particles cannot be confined. Moreover, one can easily check that T equals unity for 
the critical values g, = n.n, so the potential is transparent to all energies. In contrast, 
for pure scalar potentials (g, = 0), the transmission coefficient becomes T (  E) = 
[ 1 + ( Ez/p2) sinh' g,]-' approaching zero as lgsl + 00, leading to particle confinement, 
i.e. a particle moving in the left (or right) region will remain there indefinitely. For 
equally and inverted mixed potentials, the transmission coefficient is written as T (  E )  = 
[1+ ( ~ * / 2 ) ~ (  E rt m)/(  E T m)]-', where the upper and the lower signs refer to g, = g, = 
g+/2 and g, = -g, = g-/2 respectively. At high energies we have T - (1 + g2/4)-', and 
hence the transmission does not occur as the potential becomes sufficiently strong. 
Therefore, we are brought to the conclusion that both equally and inverted mixed 
potentials do confine particles. We also note that confining properties depend neither 
on the sign of the particle energy nor on the character (attractive or repulsive) of the 
potentials, due to the fact that PIPS of either sign act as a barrier. These conclusions 
still remain valid in the massless limit, so light particles may be also confined. 

The authors thank Dr M T PCrez-Frias and Dr P Ferngndez for helpful comments. 
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